
EXPERIENCE PRODUCING SIMULATED EVENTS FOR THE DZERO
EXPERIMENT ON THE SAM-GRID

G. Garzoglio#, I. Terekhov, FNAL, Batavia, IL 60510, USA
J. Snow, Langston University, Langston, OK 73050, USA

S. Jain, A. Nishandar, University of Texas at Arlington, Arlington, TX 76019, USA

Abstract
Most of the simulated events for the DZero experiment at
Fermilab have been historically produced by the “remote”
collaborating institutions. One of the principal challenges
reported concerns the maintenance of the local software
infrastructure, which is generally different from site to
site. As the understanding of the distributed computing
community over distributively owned and shared
resources progresses, the adoption of grid technologies to
address the production of montecarlo events for high
energy physics experiments becomes increasingly
interesting. The SAM-Grid is a software system
developed at Fermilab, which integrates standard grid
technologies for job and information management with
SAM, the data handling system of the DZero and CDF
experiments. During the past few months, this grid system
has been tailored for the montecarlo production of DZero.
Since the initial phase of deployment, this experience has
exposed an interesting series of requirements to the SAM-
Grid services, the standard middleware, the resources and
their management and to the analysis framework of the
experiment. As of today, the inefficiency due to the grid
infrastructure has been reduced to as little as 1%. In this
paper, we present our statistics and the “ lessons learned”
in running large high energy physics applications on a
grid infrastructure.

INTRODUCTION
The SAM-Grid is an integrated grid infrastructure for job,
data and information handling. Its goal is to enable fully
distributed computing for the second run of data taking of
the DZero and CDF experiments at Fermilab, Batavia,
Illinois. The SAM-Grid project integrates standard grid
technologies, such as the Globus Toolkit and Condor-G,
for job and information management (JIM) [1, 2] with
software developed at Fermilab for data handling, the
Sequential Access via Metadata system (SAM) [3, 4].
While the SAM system has been used in production since
1999, the full SAM-Grid infrastructure, which comprises
job and information management as well as data handling,
has been deployed for production starting in January
2004. The system is currently used to produce simulated
(montecarlo) events for DZero and it is under
development to allow data reconstruction for DZero and
montecarlo production for CDF. As of today, the system
has produced about 2 million events, equivalent to about
10 years of computation on a typical GHz CPU.

During the initial phase of deployment, between January
and March 2004, the inefficiency in event production* due
to the grid infrastructure has been reduced from 40% to 1-
5%. This paper describes the problems that we have faced
during the phase of deployment and subsequent
operations, and it explains the solutions adopted to
decrease the production inefficiency.

The paper is organized in two main sections. First, we
describe the SAM-Grid deployment model, in order to
stress the similarity to other grid infrastructures, as far as
software and hardware layout is concerned. Second, we
list the problems encountered during the deployment and
the solutions adopted. The list is organized in three broad
categories: system or cluster problems, gateway or
grid/fabric interface problems, and grid services
problems.

THE SAM-GRID DEPLOYMENT
The services of a grid architecture can be generally
organized in two distinct layers: the grid layer, which
encompasses those services that are global in nature, and
the fabric layer, which includes services whose scope is
restricted to individual sites. The two layers interact via
an interface, which adapts the generic directives of the
grid services to the peculiarity of the configuration of the
fabric at the site.
Figure 1 shows the division in grid and fabric services for
the SAM-Grid architecture. The SAM-Grid grid-level
services include the resource selection service, the global
data handling service, such as metadata and replica
catalogue, and the submission services, which are
responsible for maintaining the queue of grid jobs and for
interacting with the remote resources at the sites. The
fabric services include the local data handling and storage
services, the local monitoring, and the local job scheduler.
The most popular interface between the two layers is
defined by the Globus Resource Allocation and
Management (GRAM) protocol [5]. The Globus Toolkit
distributes implementations of different interfaces for
various batch systems. These interfaces are called job-
managers and have become the de facto standard. As we
argue in the later section, these job-managers are not
sufficient for a complex grid infrastructure. For this
reason, the SAM-Grid has developed its own job-
managers, adhering to the GRAM protocol.

garzoglio@fnal.gov
*
 The inefficiency is defined as 1 – (events produced / events requested)

Figure 1: diagram of the SAM-Gr id architecture
organized in gr id and fabr ic services. The gr id services
are global in nature, while the fabr ic services are
limited to the scope of a single site

The deployment phase consisted in installing and
configuring software at the collaborating sites so that they
could accept jobs from the SAM-Grid grid services. The
sites generally offered a gateway machine and
administrative support in order to install the standard
middleware from the Virtual Data Toolkit (VDT)
distribution [6], the SAM-Grid grid/fabric interface, and
the client software for the fabric services. The fabric
services could run on different machines nearby. It should
be noted that the SAM-Grid does not require any
preinstalled software or running daemons at the worker
nodes of the cluster.
The SAM-Grid is currently deployed in the US and
Europe at a dozen sites, half of which are stable enough to
allow production quality job execution. Because the
software infrastructure at each site is uniform and adapts
to the configuration of the fabric, the maintenance work
necessary to run production consists of a single grid
administrator with contact persons at each site, in a
seldom case where privileged access is needed. This is an
improvement on the pre-grid model, where every site
needed a person responsible for maintaining the local
production scripts and for submitting the jobs locally. In
the SAM-Grid model a single user can submit from his
client machine to any collaborating site.

THE LESSONS LEARNED
During the phase of deployment and subsequent
operations, we have encountered a variety of problems for
which we present solutions. We organize the problems in
three major categories, depending on the location of their
occurrence:

• at the cluster: generally stemming from
administrative problems with the system

• at the gateway: in the grid/fabric interface

• at the grid services: typically problems in the
access to the grid services by the fabric.

Cluster problems
Worker nodes synchronization: grid infrastructures rely
on strong authentication mechanisms to grant access to
resources. Security tokens are time stamped and their
validity is checked against the machine clock. In our
experience, maintaining the synchronization within
minutes of absolute time is generally enough, since that is
the minimum time between when the token is created and
when it is used at the collaborating site, considering the
typical latencies of a grid system. Various tools are
available to system administrators to synchronize the
machines clocks, including NTP [7].
Failure in polling the status of a job from the local
batch system: the SAM-Grid was initially interfaced to
three different batch systems: PBS, BQS, and Condor.
After submitting on the order of hundreds of jobs, the
SAM-Grid periodically polls their status. In our
experience, all of these batch systems, especially when
under stress, have failed to report the status of the local
jobs, either because the polling request timed out (PBS,
Condor) or because the batch system temporarily couldn’ t
find the job in the queue (BQS). It should be noted that
this transient condition would not disrupt the activity of
an interactive user. To the contrary, it causes the grid to
consider the job terminated, thus creating a resource leak.
Our attempts to aggregate polling requests, in order to
diminish the stress to the batch system, only mitigated the
problem. We have therefore written a level of abstraction
on top of the batch systems, with the purpose of
increasing the reliability of the interaction with them. We
refer to this layer as “ idealizer” , as it idealizes the
behaviour of the underlying batch system. We found this
technique of fundamental importance to increase the
stability of grid operations.
The “ Black Hole” effect: even if a single worker node of
a cluster has configuration problems that cause the jobs to
crash, all the jobs in the queue end up crashing. If the
batch system is busy processing long jobs, in fact, the
failing node is the only one with a fast turn around and
the scheduler will keep sending jobs to it. Using the batch
system “ idealizer” , we have designed ways to statistically
discourage submission to nodes that process long jobs
suspiciously too fast.
The worker nodes may need to know their domain
name: the domain name is a convenient way to express
global policies. In the case of the SAM-Grid, the
infrastructure selects the “best” file transfer protocol
according to a map that includes the domain name.
Worker nodes that were not configured to know their
domain name could not use the protocol selection
mechanism. Letting the worker node know their domain
is a problem easily solvable administratively.
Running gr idftp transfers between the head and the
worker nodes in a pr ivate network requires special
configuration: the standard gridftp software, which is
distributed by the Globus Toolkit, works in “active” mode

only. This means that a client that initiates a transfer from
a worker node is responsible for opening the data port. If
the server at the head node does not have an interface to
the private network, it may not be able to connect to it.
The problem appears with the Network Address
Translation (NAT) machine failing to translate the worker
node address requested by the server. We believe that this
problem is related to the implementation of the server that
we are using, which come from the Globus Toolkit
v2.4.3. Even if it may be possible to solve this problem by
changing the NAT configuration, the administrators of
our collaborating sites have always opted to give the head
node an interface to the private network.
Plan Operating System upgrades with the system
administrators or be resilient to the changes: in the
SAM-Grid, resources advertise the operating system of
the local cluster. Jobs that require a special version of an
operating system can require it in the job description. The
resource selection mechanism is then responsible to
honour the extra requirement. Unplanned operating
system upgrades at a site have disrupted SAM-Grid
operations at that site in the past.
Study the local policies: lack of understanding of the
local policies or badly configured policies result in jobs
failing or being delayed. Below are a few examples of
how local policies have caused problems to SAM-Grid
operations.

• Jobs have failed because we selected as default a
batch system queue with a CPU limit too short
with respect to the typical length of the jobs. A
“good” default for interactive job submission is
not necessarily good for grid jobs. The local user
community, in fact, may have job requirements
that are different from the ones of the grid users.

• We experienced long delays because the maximum
number of file transfers allowed by the data
handling system was unreasonably low.

• On a condor system, some jobs could never finish.
The typical grid jobs were expected to run for
about half a day. Because of local resource usage
and user priorities, this translated in a very high
probability of the grid jobs being pre-empted. We
had to allow only short jobs at that site.

Gateway problems
We have found that the standard grid/fabric interfaces,
provided by the Globus Toolkit in the form of job-
managers, were not sufficient to run production-quality
jobs on the SAM-Grid [8]. The standard interfaces, in
fact, lack in the following areas:

• Flexibility: they interface only to “standard” batch
system configurations. None of our initial sites
was compliant to the Globus job-managers
“standards” . For example, as part of a special
agreement, the University of Wisconsin at
Madison runs some of the DZero jobs on their
condor cluster without pre-emption. The intention
to take advantage of this local policy must be
expressed at the time of local job submission. The

submission command is specific and cannot be
expressed using the standard job-managers.
Another example is the special option used at the
IN2P3 computing centre in Lyon, France, to
inform the scheduler that a job plans to access data
via HPSS, the local mass storage system. In case
of HPSS downtime, the batch system can schedule
those jobs specially, avoiding crashes due to denial
of access to the data. This option is also site
specific and cannot be part of the standard job-
managers. In general, the job-managers do not
provide a way to customize the interface to the
local scheduler.

• Scalability: the Globus Toolkit instantiates a
process at the gateway machine for every grid job
entering the site. On the average commodity
machine this limits the number of grid jobs to a
few hundreds. Thus, the necessity of aggregating
multiple local jobs from a single grid job. This
aggregation is not part of the standard job-
managers.

• Comprehensiveness: the Globus job-managers
interface to the local batch systems only. There are
a series of other fabric services that in general
need notification when a job enters a site. The data
handling system could start data pre-staging while
the job is idle in the scheduler queue. The
monitoring system can observe the status of the
job in the queue, while it is not running; this
cannot be achieved if the job is the entity
responsible for sending monitoring information.
Database accesses common to all the batch
processes can be aggregated, thus reducing
dramatically network traffic.

• Robustness: the standard job-managers cannot
react to temporary problems when interacting with
the local scheduler. We have mentioned in the
previous section our experience when polling local
job statuses. Typically, this problem results
resource leaks.

To overcome these problems, the SAM-Grid has
developed a suite of job-managers. The interactions with
the local batch system, or rather its “ idealizer” , are
mediated via a layer of abstraction, which we call the
“batch adapter” . The batch adapter is set up at installation
time to reflect the specifics of the configuration of the
local batch system. Using this extra layer of indirection
we could customize the grid/fabric interface to the batch
system of every collaborating site, reflecting the
peculiarities of the local policies and hardware/software
configuration.
The SAM-Grid job-managers aggregate multiple batch
jobs from single grid jobs, thus drastically reducing the
scalability problem of the standard job-managers. A grid
job is split at the gateway node into multiple local jobs,
according to local or virtual organization policies. This
aggregation is also convenient for the grid users, who can
manage their grid jobs as single entities, irrespectively of
their local multiplicity.

Finally, the SAM-Grid job-managers notify relevant
fabric services when a job enters the site and aggregates
batch job database accesses, in order to overcome the lack
of “comprehensiveness” of the standard job managers.

Grid problems
Scalability of semi-central services: it is well known
that access to semi-central services represent a single
point of failure in distributed architectures. Nevertheless,
grid infrastructures need to be able to cope with the
shortcomings of semi-central services, as integration is
often needed in order to achieve production-quality
service.
In the case of the SAM-Grid, clients access the metadata
catalogue via a semi-central server. As dozens of
processes at the worker nodes try to access the service
almost at the same time, most network connections get
refused. This effect was responsible for the failure of
about 30% of the jobs. The problem was virtually
eliminated taking 3 actions:
1. Streamline the communication with the server, in

order to reduce the connection time
2. Aggregate the communication where information

overlap among processes existed: the information
was gathered once from the gateway node and
distributed to the processes

3. Introduce retrial with exponential back off in case of
failure

It should be noted that in order to implement 2 above we
have extended the grid/fabric interface discussed in the
previous section. The retrials, instead, have been inserted
directly in the client code, making the change in principle
transparent to the running applications. We believe that
both steps can apply directly to other grid infrastructures
similar to the SAM-Grid. On the other hand, streamlining
the communication to the database is a step specific to the
typical queries used and we believe it is harder to
generalize.
Firewall configuration: maintaining a consistent
functional configuration of the firewalls of the
collaborating institutions in the whole grid is a challenge.
System administrators generally are willing to open ports
in the firewall to specific nodes at the time of the
installation. As the grid grows, new nodes should be
granted access through the firewall of each institution.
Realistically though, the reaction of the system
administrators for this types of requests is generally slow
and the update of site policies, such as network access,
are tough to negotiate.
The SAM-Grid has faced this problem mainly for data
transfers. New installations are sometimes interested in
copying files that are located only at storage elements of
older installations. The transfer clients cannot access the
servers of the older installation, since they are behind a
firewall.

To address the problem, the SAM-Grid has the ability of
routing files through a network of data handling servers.
The challenge is still understanding the topology of this
network and configuring the routing to overcome the
firewall limitations. We envision that as new global
services become distributed, the problem of routing
information will arise in other domains as well. Thus, the
ability of delegating proxy servers to access the
information should be considered in these architectures as
a primary requirement.

ACKNOWLEDGEMENT
We would like to thank all the members of the SAM-Grid
team and the DZero and CDF collaborators that have been
helping with the SAM-Grid deployment and operations.
We also thank the Condor team for their support and the
local system administrators.

REFERENCES
[1] I. Terekhov, et al. "Grid Job and Information

Management for the FNAL Run II Experiments", in
Proceedings of Computing in High Energy and
Nuclear Physics (CHEP03), La Jolla, Ca, USA,
March 2003.

[2] G. Garzoglio, et al. "The SAM-GRID project:
architecture and plan.", in Nuclear Instruments and
Methods in Physics Research, Section A,
NIMA14225, vol. 502/2-3 pp 423 - 425

[3] I. Terekhov et al., "Meta-Computing at D0"; in
Nuclear Instruments and Methods in Physics
Research, Section A, NIMA14225, vol. 502/2-3 pp
402 – 406

[4] I. Terekhov, et al. "Distributed Data Access and
Resource Management in the D0 SAM System", in
Proceedings of the 10th IEEE International
Symposium on High Performance Distributed
Computing (HPDC-10), San Francisco, California,
Aug. 2001

[5] I. Foster and C. Kasselman, "Globus: A
Metacomputing Infrastructure Toolkit", International
Journal of Supercomputer Applications, 11(2): 115-
128, 1997

[6] I. Foster, "Grid Technologies & Applications:
Architecture & Achievements", in Proceedings of
Computing in High Energy and Nuclear Physics
(CHEP01), Beijing, China, Sep. 2001

[7] http://www.ntp.org/
[8] G. Garzoglio, et al. "The SAM-Grid Fabric

services", talk at the IX International Workshop on
Advanced Computing and Analysis Techniques in
Physics Research (ACAT-03), Tsukuba, Japan; to
appear in Nuclear Instruments and Methods in
Physics Research, Section A

